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Abstract

This paper introduces important topics in elementary number theory, with a special focus on
divisibility and congruence relations. We further demonstrate these ideas through their applica-
tions in various problems, including subsets of integers. Using these concepts, we also define the
Euclidean algorithm, modular arithmetic, and primitive roots.

1 Introduction

Divisibility, prime numbers, and congruences are some of the most significant topics within number
theory. They lay the foundation for critical concepts that allow us to develop new ideas, in order to
dive deeper into existing ones. Our paper begins with some important definitions, properties, and
theorems regarding divisibility and primes, which we discuss in Section 2. To further understand these
concepts, Section 2 also focuses on relevant problems that expand our ways of approaching divisibility
ideas.
Section 3 focuses on the definitions of congruence and modular arithmetic, stemming from the ones

introduced in Section 2. This section also primarily focuses on congruence applications to Lagrange’s
Four Square Theorem, a famous problem in number theory.
The last section, Section 4, builds on the definitions in the previous section, and introduces new

topics including the Chinese Remainder Theorem, primitive roots, and quadratic residues, concluding
with quadratic residue problems.

2 Divisibility and Primes

As divisibility and prime numbers are some of the foundations for all of number theory, it is crucial to
understand these two key ideas, their properties, and their applications in depth.

Definition 2.1. If ax = b for any integer x, then we say that a divides b, or a|b. Conversely, if ax ̸= b,
then a does not divide b, or a ∤ b.

Theorem 2.2. Properties of Divisibility 1

1. a|b implies a|bc for any integer c;

2. a|b and b|c implies a|c;

3. a|b and a|c imply a|(bx+ cy) for any integers x and y.

As emphasized in the introduction, prime numbers are, essentially, the building blocks of number
theory and hold great importance in understanding other concepts, such as congruencies and modulo
arithmetic which are discussed later in Section 3. Their unique characterization and pattern, relative
to other numbers, requires more advanced mathematics, and parts of their properties remain a mystery
to mathematicians that topics in number theory attempt to unveil.

Definition 2.3. If an integer p has no divisor other than 1 and itself, it is called a prime number.
Otherwise, it is a composite number. Examples of prime numbers: 2, 3, 5, and 7; examples of composite
numbers: 4, 6, 8, and 9.

1Although these properties each have their respective proofs, this paper will not highlight them.
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The greatest common divisor, or gcd, is a concept that has served as a basis for numerous theorems,
perhaps most famously in the Euclidean algorithm, which is an efficient method to compute the gcd
of two integers.

Theorem 2.4. The greatest common divisor g of integers b and c, denoted as (b, c) = g, can be
characterized in the following two ways:

1. It is the least positive value of bx+ cy where x and y range over all integers.

2. It is the positive common divisor of b and c which is divisible by every common divisor.

There are many different properties which stem from the concept of gcd, but only the most relevant
ones to problems in Section 2 will be cited in this paper.

Theorem 2.5. For any positive integer m, (ma,mb) = m(a, b).

Theorem 2.6. For any interger x, (a, b) = (b, a) = (a,−b) = (a, b+ ax).

There are also special cases of gcd when there are no common divisors between two numbers. The
following problems will discuss this special case in depth.

Definition 2.7. We say that a and b are relatively prime in case (a, b) = 1. This can also be expressed
by saying that a and b are coprime, or that a is prime to b.

The inverse of both key ideas of divisibility and greatest common divisor is multiples, or the least
common multiple.

Definition 2.8. If a|b, and a is a divisor of b, then it is understood that b is a multiple of a.
If ai|b for i = 1, 2, ..., n, then integers a1, a2, ..., an have a common multiple b, and the least common
multiple of a and b, lcm(a, b) denoted as [a, b], is the least of the positive common multiples denoted
by {a1, a2, ..., an}.

Combinatorial number theory studies the arrangement of objects and can be used to count the
maximum number of arrangements possible. It is also commonly used to discern if any particular
pattern exists in partitions of sets.
Within combinatorial number theory, one of the most crucial theorems is the pigeonhole principle.

It is used frequently in mathematics, and is the basis of other fundamental proofs such as Fermat’s
Little Theorem, which will be introduced in Section 4.

Theorem 2.9 (Pigeonhole Principle). If n + 1 elements are placed into n sets, then at least one of
the sets contains two or more elements.

Divisibility Problems

As emphasized throughout Section 2, theorems regarding prime numbers, divisibility, and the pi-
geonhole principle have numerous applications. Some applications are explored in depth in simplified
problems and examples listed below.

Theorem 2.10. If one chooses more than n numbers from the set {1, 2, 3, ..., 2n}, then two of them
are relatively prime.

Example 2.11. We can start by using a smaller example, with n = 3. Then, we have the numbers:

{1, 2, 3, 4, 5, 6}

If we choose n + 1 numbers from this set, we can see that 1 and 5 are coprime to all other numbers.
This forces us to choose the remaining four numbers, {2, 3, 4, 6}, but even in this set, 2 and 3 are
coprime. Thus, at least two numbers will always be coprime in this set. But how do we prove this?

Proof of Theorem 2.10. First let us prove that two consecutive integers are always coprime. To do so,
we denote two integers as n and n+ 1. Then let

gcd(n, n+ 1) = g
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where g is a natural number. By definition, g|n and g|n+ 1, which means that

g|(n+ 1)− n = 1

This can be derived from the basis principle of the Euclidean algorithm, which states that the greatest
common divisor of two numbers does not change if the larger number is replaced by its difference with
the smaller number. Thus, the gcd(n, n+ 1) = 1.
Returning to our original problem, we now see that to pick more than n numbers from the set (i.e more
than half), there will always be at least two numbers that are consecutive by the pigeonhole principle.
Since consecutive numbers are always coprime, the proof is completed.

Theorem 2.12. If one chooses more than n numbers from the set {1, 2, 3, ..., 2n}, then one number
is a multiple of another.

Example 2.13. Just like in the last problem, we start with a simple example, this time with n = 3

{1, 2, 3, 4, 5, 6}

If we break these numbers into their prime factorization, then the set will be:

{1, 2, 3, 22, 5, 2 · 3}

1 is a factor of all integers, and 2 is a factor of both 4 or 6. Additionally 3 is also a factor of 6, meaning
that 5 is the only number who has no factors other than 1 in the set. Thus we see that it is impossible
to pick four numbers so that none are multiples of each other.

Proof of Theorem 2.12. Every positive integer can be expressed as the product of an odd integer and
a power of 2. This can be proved using the fundamental theorem of arithmetic, which states that every
number can be written as a product of primes. Thus if we denote an integer n,

n = 2p1 · 3p2 · 5p3 · 7p4 ...

n = 2p1 · (3p2 · 5p3 · 7p4 ...)

The terms in brackets are a product of odd numbers, so the whole term will be odd. Thus, if we denote
a positive integer as a, then

a = 2k(2m− 1)

where k ≥ 0 and m ≥ 1 are natural numbers.

Using this idea, we can now rewrite each of the chosen n + 1 numbers in this form. However, since
there are only n odd numbers in the set, there are only n possibilities for the 2m− 1 factor. Thus, by
the pigeonhole principle, there must be two integers who share the same 2m− 1 factor. Therefore, one
number will always be a multiple of another.

Remark 2.14. Can this be avoided with exactly n numbers? An n element subset does not have to
have two distinct elements in it with one dividing the other. This is easier to model in an example. If
we take our n = 3 set from earlier, we see that

{2, 3, 5}

is an example of a set with 3 numbers that has no multiples in it. Thus, this proof only holds for sets
with more than n numbers.

Theorem 2.15. If 50 numbers are chosen from the set {1, ..., 99}, where no two numbers in the set
sum to 99 or 100, then the chosen numbers must be {50, 51, 52, ..., 99}.

Example 2.16. In order to understand this theorem, a smaller set can be used with the same param-
eters. If the set {1, ..., 9} is assigned as set A and no two numbers of the five chosen must sum to 9 or
10, then the chosen numbers must be {5, ..., 9}. To see why this is, suppose that in this example, we
chose the numbers {1, 2, 3, 4, 5} instead. Since 4 + 5 = 9, one of these two numbers must be replaced
with another number that’s not in the set, say 6. However, since 4 + 6 = 10, the set violates the rule
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yet again, and we must replace either 4 or 6. We can repeat this algorithmically with the set and
replace numbers that don’t work with the next consecutive number:

A ̸= {1, 2, 3, 5, 6} ∵ 23 + 6 = 9

A ̸= {1, 2, 5, 6, 7} ∵ 2 + 7 = 9

A ̸= {1, 5, 6, 7, 8} ∵ 1 + 8 = 9

A = {5, 6, 7, 8, 9}

Using this process, we can see that the only set that works is {5, ..., 9}. A similar logical process can
be applied to the original set in the theorem.

Proof of Theorem 2.15. For the set A = {1, ..., 99}, we must consider all 49 pairs that add up to 99:
{1, 98}, {2, 97}, . . . , {49, 50}. And consider the 49 pairs that add up to 100 as well: {1, 99}, {2, 98}, . . . , {49, 51}.

The chosen set of fifty numbers for this theorem must contain only one number of each pair. Hence,
if the solution contains 99, it must not contain 1. If the solution contains 98, it must not contain 2.
Proceeding in this pattern illustrates why the chosen set must be {50, ..., 99}.

To further demonstrate this, suppose that the chosen set is {1, ..., 50}. As seen in the pairs above,
if the set contains both 49 and 50, the set is inconsistent with the problem; hence the set must not
contain 49. If the set contains 51 or 52, it cannot contain 48. By following through this way, you will
arrive to a new list of {50, ..., 99}, which must be true and the original set must be a contradiction.

Theorem 2.15 can further be generalized for any set that follows the outline {1, 2, . . . , 2n− 1}.

Corollary 2.17. If n numbers are chosen from the set {1, 2, . . . , 2n − 1} where no pair of numbers
sum to 2n− 1 or 2n, then the set must be {n, n+ 1, . . . , 2n− 1}.

This corollary is true because, as seen in the example, the first number in the set must be half of 2n
and must be followed with consecutive numbers leading to one less than 2n, 2n− 1. The set must be
in this format to ensure that no two pairs add up to 2n− 1 or 2n. This condition is satisfied because
any integer added to n in this set will always be greater than 2n, for example adding the first two
terms will result in 2n + 1. Therefore, this chosen set will be the only one that will satisfy the other
conditions in this theorem, and must be true.

3 Congruence relations

As well as the evident significance of divisibility in number theory, another fundamental concept that
explains divisibility from another approach is congruence. Congruences can help derive divisibility tests
used to prove other theorems or concepts. As other sections in this paper will cover, congruences have
numerous applications for other powerful techniques as a foundational tool in number theory. Many
other ideas build on congruences, which is why it is crucial to understand its basics and properties.

Definition 3.1. If a non-zero integer m divides a− b, we say that a is congruent to b modulo m and
write a ≡ b (mod m). If m ∤ (a − b), then we say that a is not congruent to b modulo m, which is
written as a ̸≡ b (mod m).

Definition ?? skims over the idea of ”modulo”, or modular arithmetic, which coincides with both
the concept and notation of congruences. It is a system which considers the remainders of a number.
An easy way to think of it would be the face of a clock: The numbers go from 1 to 12, but once you
get to ”13 o’clock,” it becomes 1 o’clock again. This is the same as taking mod 12 of a number, or ”13
is congruent to 1 modulo 12.”

2In number theory and proofs, “because” is most commonly denoted with the symbol ∵
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Definition 3.2. Modulus m, an assumed positive integer, is the idea of taking an integer m and
cutting it off at a specified point. For example:

10 (mod 3)

10 = 3(3) + 1

10 ≡ 1 (mod 3)

Along with the definitions of congruences and modulo, the concepts come with a list of important
properties. The most relevant to this paper with referenced notation are listed below in Theorem 3.3:

Theorem 3.3. Let a, b, c, d, x, y denote integers. Then:

1. a ≡ b (mod m), b ≡ a (mod m), and a− b ≡ 0 (mod m) are equivalent statements.

2. If a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m).

3. If a ≡ b (mod m) and c ≡ d (mod m), then ax+ cy ≡ bx+ dy (mod m).

4. If a ≡ b (mod m) and c ≡ d (mod m), then ac ≡ bd (mod m).

5. If a ≡ b (mod m) and d|m, d > 0, then a ≡ b (mod d).

6. If a ≡ b (mod m) then ac ≡ bc (mod mc) for c > 0.

7. If a ≡ b (mod m) then f(a) ≡ f(b) (mod m), where f denotes the value of the function.

Lagrange’s Four Square Theorem

Lagrange’s Four Square Theorem states that any positive integer can be expressed as a sum of four
squares. For example,

23 = 12 + 22 + 32 + 32

This theorem was proven by Joseph Louis Lagrange in 1770, and is a special case of the Fermat
polygonal number theorem. We will prove this theorem in steps, starting with proving three Lemmas
that will aid us in our ultimate proof.

Lemma 3.4. Let m and n each be the sum of four squares. Then mn is the sum of four squares.

Proof. Let us denote m = a2 + b2 + c2 + d2 and n = w2 +x2 + y2 + z2. If we multiply and factor these
two equations, we get:

mn = (a2 + b2 + c2 + d2)(w2 + x2 + y2 + z2)

mn = a2w2+a2x2+a2y2+a2z2+b2w2+b2x2+b2y2+b2z2+c2w2+c2x2+c2y2+c2z2+d2w2+d2x2+d2y2+d2z2

mn = (aw − bx− cy − dz)2 + (ax+ bw + cz + dy)2 + (ay + cw + dx− bz)2 + (az + dw + by − cx)2

Since all values in the parentheses are integers, mn is a multiple of four squares and the proof is
complete.

Lemma 3.5. If 2n is a sum of two squares, then n is also the sum of two squares.

Proof.
2n = (x+ y)2 + (x− y)2

2n = 2x2 + 2y2

n = x2 + y2

If we set x+ y equal to a and x− y equal to b, we can set up a system of equations and find

x =
a+ b

2
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and

y =
a− b

2

To make x and y integers, either a and b must both be even, or both must be odd to ensure the
numerator is even. However, we can already assume this to be true, because our base equation of 2n
ensures that x+ y (a) and x− y (b) must satisfy these constraints. Since 2n is already even, the only
way that the base equation holds is if x+ y and x− y were either both even or odd.

Lemma 3.6. If p is an odd prime, then there exist integers a, b, k such that a2 + b2 + 1 = kp and
0 < k < p.

Proof. For this lemma, we can first assume that 0 ≤ a, b ≤ p − 1 such a2 + b2 + 1 ≡ 0 (mod p). If a
and b are replaced by p− a and p− b, respectively, then the inequality can be rearranged to produce

a, b <
p

2
. From this, we have

0 < kp = a2 + b2 + 1 <
(p
2

)2

+
(p
2

)2

+ 1 =
p2

2
+ 1 < p2

This implies that k < p, and thus the lemma is satisfied.

Theorem 3.7 (Lagrange’s four square theorem). Every positive integer x can be written as the sum
of four integer squares.

Proof. By Lemma 3.4, it is sufficient to prove that each prime can be expressed as a sum of four squares.
Then all composite integers can be expressed as prime factorization because of the fundamental theorem
of arithmetic. If we suppose that p is odd, then by Lemma 3.6 we know

mp = a2 + b2 + c2 + d2 (1)

For some m, a, b, c, d, where 0 < m < p, Lemma 3.6 states that for any prime p, some multiple
0 < m < p is the sum of four squares. Since m = 1 already solves the identity, we will show that if
m > 1, then np is also the sum of four squares where 0 < n < m.

If we assume that m is odd and greater than 1, we can write

w ≡ a (mod m)

x ≡ b (mod m)

y ≡ c (mod m)

z ≡ d (mod m)

where w, x, y, and z are all in the interval (−m
2 , m

2 ) included because w2 < m2

4 which means that
|w| < m

2 . Therefore,

w2 + x2 + y2 + z2 < 4 · m
2

4
= m2

From taking equation 1 modulo m, we get

w2 + x2 + y2 + z2 ≡ 0 (mod m).

Thus, we have w2+x2+y2+z2 = nm for some integer n. Since we proved that w2+x2+y2+z2 < m2,
we know that n < m. If n = 0 then

w = x = y = z = 0

so that
a ≡ b ≡ c ≡ d ≡ 0 (mod m)

mp = a2 + b2 + c2 + d2 = m2q
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However, this implies p = mq which contradicts the fact that p is prime, so n must be 0 < n < m.
Next, we look at Lemma 3.4, and realize the left side of the equation will be nm2p. The right side is
a sum of four squares, in which three of them are multiples of m.

ax− bw − cz + dy = (aw − bw) + (dy − cz)

ay + bz − cw − dx = (ay − cw) + (bz − dx)

az − by + cx− dw = (az − dw) + (cx− by)

The last sum can also be expressed as

aw + bx+ cy + dz ≡ w2 + x2 + y2 + z2 ≡ 0 (mod m)

Therefore, the equation in Lemma 3.4 can be divided by m2. The result is a form of np as a sum of
four squares, as desired.

4 Important Congruence Theorems and Primitive Roots

Some important generalizations and theorems stem off of the concept of modular arithmetic. In
particular, Fermat’s Little Theorem and Euler’s generalization build off of each other to form the basis
of congruences. The Chinese remainder theorem is used to find a common solution of a system of linear
congruences. It is the idea of reducing a linear congruence ax ≡ b (mod m) to a set of congruences
ax ≡ b (mod mi) where the items in the set /m1,m2,m3, .../ are the prime power factors of m. The
CRT gurantees that as long as m1, m2, and m3 are all pairwise coprime (meaning each pair’s gcd is
1), then a solution must exist.

Theorem 4.1 (Chinese Remainder Theorem). Suppose m1,m2, ...,mr are pairwise relatively prime
positive integers, and suppose a1, a2, ..., ar are integers. Then the congruences x ≡ ai (mod mi),
i = 1, 2, ..., r, have common solutions. Any two solutions are congruent modulo m1,m2, ...,mr.

Example 4.2. In order to find a solution that satisfies x ≡ 1 (mod 4), x ≡ 0 (mod 3), and x ≡ 5
(mod 7) simultaneously, we first recognize that m1 = 4, m2 = 3, m3 = 7, and m = m1 ∗m2 ∗m3 = 84.
Since each modulo value are relatively prime in pairs, the Chinese Remainder Theorem will allow us
to find a value for x that satisfies each congruence:

m

m1
= 21, 21 · a1 ≡ 1 (mod 4), a1 = 5

m

m2
= 28, 28 · a2 ≡ 1 (mod 3), a2 = 9

m

m1
= 12, 12 · a3 ≡ 1 (mod 7), a3 = 3

x = (21 · 5 · 1) + (28 · 9 · 0) + (12 · 3 · 5)

x ≡ 285 (mod 84) ≡ 33 (mod 84)

As well as the Chinese Remainder Theorem, many congruence theorems also use Euler’s Totient
Function, which is given in Definition 4.3. Euler’s Totient Function is especially relevant for primitive
roots, discussed in definition 4.6, which help explain many other proofs in number theory, some of
which are shown in Section 4. In order to understand those proofs and theorems, it is crucial to be
familiar to this function.

Definition 4.3. Euler’s totient function ϕ is a function such that ϕ(m) equals the number of positive
integers less than or equal to m that are relatively prime to m.

With this in mind, we can now integrate this definition into other theorems, such as Fermat’s Little
Theorem:

Theorem 4.4 (Fermat’s Little Theorem). Let p denote a prime. If p ∤ a then ap−1 ≡ 1 (mod p). For
every integer a, ap ≡ a (mod p).
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Fermat’s Little Theorem is a fundamental theorem which helps compute powers of integers mod-
ulo prime numbers. Elaborating on Fermat’s Little Theorem, another important theorem is Euler’s
Generalization:

Theorem 4.5 (Euler’s Generalization). If (a,m) = 1, then aϕ(m) ≡ 1 (mod m).

This is Euler’s generalization of Fermat’s theorem, both of which are frequently used in elementary
number theory. Using Euler’s Totient Function, many different theorems can be discovered and many
manipulations can be done, such as primitive roots.

Definition 4.6. If a belongs to the exponent ϕ(m) modulo m, then a is called a primitive root modulo
m.

Definition 4.7. Let m be a natural number, and let a be any integer with (a,m) = 1. Let h be the
least positive integer with ah ≡ 1 (mod m). Then we say that the order of a modulo m is h (or that
a belongs to h modulo m).

Primitive roots also allow us to learn more about prime numbers and distinct patterns about them,
as we will see in the next few examples.

Theorem 4.8. If p is a prime, then there exist ϕ(p− 1) primitive roots modulo p. The only integers
having primitive roots are pe, 2pe, 1, 2, and 4, with p an odd prime.

The quadratic reciprocity law is a continuation of the idea of congruences and is another application
of that concept. Within quadratic reciprocity, which helps solve a congruence such as x2 ≡ a (mod m),
are quadratic residues and the Legendre symbol, which work together to solve quadratic reciprocity
problems.

Definition 4.9. For all a such that a is coprime to m, or (a,m) = 1, a is called a quadratic residue
modulo m if the congruence x2 ≡ a (mod m) has a solution. If it has no solution, then a is called a
quadratic nonresidue modulo m.

Generally, a = 0 is not considered in the list of quadratic residues. Only distinct residues or
nonresidues that are distinct modulo m are considered in the list of quadratic residues. For example, if
we let m = 5, the quadratic residues would be 1 and 4 (or −1 (mod 5)) while the quadratic nonresidues
would be 2 and 3. To further determine if an integer is a quadratic residue modulo m, the Legendre
symbol can be used.

Definition 4.10. If p denotes an odd prime and (a, p) = 1, the Legendre symbol

(
a

p

)
is defined to

be 1 if a is a quadratic residue, −1 if a is a quadratic nonresidue modulo p, and 0 if p|a.

Theorem 4.11. Properties of the Legendre symbol: Let p be an odd prime and let a and b denote
integers relatively prime to p. Then

1.

(
a

p

)
≡ a(p−1)/2 (mod p)

2.

(
a

p

)(
b

p

)
=

(
ab

p

)

3. a ≡ b (mod p) implies that

(
a

p

)
=

(
b

p

)

4.

(
a2

p

)
= 1,

(
a2b

p

)
=

(
b

p

)
,

(
1

p

)
= 1,

(
−1

p

)
= (−1)(p−1)/2

One commonly known answer of the Legendre symbol is

(
2

p

)
, which is stated in Theorem 4.12.

Although there is an extensive proof to this theorem, this paper will not explain the proof in the level
of detail required. Therefore, for problems in Section 4, the following theorem can be assumed as true.
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Theorem 4.12. If p is an odd prime and (a, 2p) = 1, then

(
a

p

)
= (−1)t where t =

∑(p−1)/2
j=1

(
ja

p

)
;

also

(
2

p

)
= (−1)(p

2−1)/8.

Definitions 4.9 and 4.10 highlight the important concepts to understand in order to learn about
quadratic reciprocity, since they are both used in its definition as well.

Theorem 4.13 (Quadratic Reciprocity Law). If p and q are distinct odd primes, where p ∤ q and q ∤ p,
then (

p

q

)(
q

p

)
= (−1)((p−1)/2)((q−1)/2)

Essentially, Theorem 4.13 explains that if p and q are two different odd primes, but both of the form
4k + 3, then either x2 ≡ p (mod q) or x2 ≡ q (mod p) is solvable, but not both. If at least one of the
distinct odd primes is of the form 4k + 1, then both congruences are solvable, or both are not.

Remark 4.14. Another form of the quadratic reciprocity law is

(
p

q

)
=

(
q

p

)
(−1)((p−1)/2)((q−1)/2).

This is true because

(
q

p

)
can be multiplied on both sides of the standard quadratic reciprocity law,

given in theorem 4.13, essentially canceling out the

(
q

p

)
on the left side. In reality, the p values in the

denominator are multiplied by each other, creating p2, which becomes 1 based off of the properties of the

quadratic reciprocity law. Therefore, it is sufficient to remark that

(
p

q

)(
q

p

)
= (−1)((p−1)/2)((q−1)/2)

will provide the same value as

(
p

q

)
=

(
q

p

)
(−1)((p−1)/2)((q−1)/2).

Euler’s criterion is also an important part of the Quadratic Reciprocity law. It states that if p is an
odd prime then

a
p−1
2 ≡

(
a

p

)
(mod p)

This can be proved by supposing that a is a quadratic residue, with a ≡ b2 (mod m). Then, Fermat’s
Little Theorem tells us that

a
p−1
2 ≡ (b2)

p−1
2 = bp−1 ≡ 1 (mod p)

Thus, this holds for when a is a quadratic residue. The opposite, -1, is true when a is a non-quadratic
residue.

Quadratic Residue Problems

In this section, we explore Quadratic Residue through two practice problems, which utilize the theorems
from Theorem 4.11. This is an important application of the concepts we reviewed in the prior section,
and shows how many theorems work together to prove certain problems.

Theorem 4.15. For odd primes p, find all values p such that

(
10

p

)
= 1.

Proof. From the properties of Legendre’s symbol, we know that

(
10

p

)
can be rewritten as

(
2

p

)(
5

p

)
.

Theorem 4.12 also provides the quadratic reciprocity of

(
2

p

)
, which is:(

2

p

)
= (−1)(p

2−1)/8

The properties of Legendre’s symbol also provide:

(
5

p

)
=

(p
5

)
(−1)

(
p− 1

2

)(
5− 1

2

)
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This means that in order to find the correct result that the theorem suggests, the p values for both

equations must either both be odd, or both be even. Considering only the

(
5

p

)
equation, we must

determine the results of each possible p value.

p ≡ 1 (mod 5) :
(p
5

)
≡

(
1

5

)
≡ 1

p ≡ 2 (mod 5) :
(p
5

)
≡

(
2

5

)
≡ −1

p ≡ 3 (mod 5) :
(p
5

)
≡

(
3

5

)
≡ −1

p ≡ 4 (mod 5) :
(p
5

)
≡

(
4

5

)
≡ 1

After noticing that 2 and 3 are quadratic nonresidues while 1 and 4 are quadratic residues, we need

to find the odd and even p values, respectively, for

(
2

5

)
= (−1)(p

2−1)/8 using the Chinese Remainder

Theorem. In order to find the result we are looking for and satisfy

(
10

p

)
= 1, the quadratic residues

of 5 must result in a congruence of 1 while the value of
p2 − 1

8
must be even. This is true for p ≡ 1

and p ≡ 7, which sets the expression to even values 0 and 6, respectively.

p ≡ 1 (mod 5), p ≡ 1 (mod 8)

m1 = 5, m2 = 8, m = m1m2 = 40

m

m1
= 8, 8 · 2 ≡ 1 (mod 5)

m

m2
= 5, 5 · 5 ≡ 1 (mod 8)

p = (8 · 2 · 1) + (5 · 5 · 1) ≡ 1 (mod 40)

We can repeat this process for p ≡ 1 (mod 5) and p ≡ 7 (mod 8), p ≡ 4 (mod 5) and p ≡ 1 (mod 8),
and p ≡ 4 (mod 5) and p ≡ 7 (mod 8). If we do so, we will find that p ≡ 1, 9, 31, 39 (mod 40). We

can also follow these steps for the quadratic nonresidues of 5 and the values of
p2 − 1

8
that will be

odd, which is only true for p ≡ 3 and p ≡ 5. Using the Chinese Remainder Theorem, we find that

p ≡ 3, 13, 27, 37 (mod 40). Therefore,

(
10

p

)
= 1 for p ≡ 1, 3, 9, 13, 27, 31, 37, 39 (mod 40).

Theorem 4.16. For an odd prime p of the form p = 22
n

+ 1, an integer a is a primitive root mod p

if and only if

(
a

p

)
= −1.

Proof. Since p = 22
n

+ 1, we have ϕ(p) = 22
n

. It follows that the order is

ordp(a)|ϕ(p) = p− 1 = 22
n

.
Using Euler’s criterion, which states that(

a

p

)
≡ a

p−1
2 (mod p)

we can show that if a is a quadratic non-residue then

a
p−1
2 ≡ −1 (mod p)

10



However, in this case
(p− 1)

2
= 22

n−1

.
Thus, if we were to have ordp(a) < p − 1, then we would have that a

p−1
2 ≡ 1 (mod m), which is a

contradiction to the original statement. Thus, it must be that ordp(a) = p− 1. Since this is true, and
a must be primitive.
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